If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20s^2-32=0
a = 20; b = 0; c = -32;
Δ = b2-4ac
Δ = 02-4·20·(-32)
Δ = 2560
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$s_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$s_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2560}=\sqrt{256*10}=\sqrt{256}*\sqrt{10}=16\sqrt{10}$$s_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{10}}{2*20}=\frac{0-16\sqrt{10}}{40} =-\frac{16\sqrt{10}}{40} =-\frac{2\sqrt{10}}{5} $$s_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{10}}{2*20}=\frac{0+16\sqrt{10}}{40} =\frac{16\sqrt{10}}{40} =\frac{2\sqrt{10}}{5} $
| 12x-4x+112=12x+64 | | 7n+12+13n-16=180 | | -7(w-9)=9w-33 | | 3x+9=-(4x+9) | | 7^3x-3=234 | | -8u+6(u-2)=-28 | | 4-5v=24 | | 42x–5=64 | | 0.4x-0.2(40+x)=0.2(50) | | 2(x+3)/5=(x-2)/3 | | 3(w+2)-5w=-12 | | 3x^2+x=260 | | 2x-3x(2x-1)=3-4x | | d+1/2=4 | | 16=-8x+3(x-8) | | 18n+13+5n=23n+13 | | 1(3)-3y=6 | | 4.1=9.5x=23.7 | | 1.9s+6=3.1-1 | | (3x+1)^2=-8x | | -4x+6=0.5(x+90) | | -28+p=7(p-20) | | 650/v2=0.125/0.600 | | 4=16t^2+18t | | 7(2x+1)=7+14x | | 200m-125m+48500=50750-175m | | -17=7w+3(4w-1) | | 8=-48-8d | | 7x-5=49x-1 | | ×-2y=30 | | 3*a/3=7 | | .25(1)+.75y=6 |